Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 94(3-1): 032306, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27739837

RESUMO

Swarming behavior continues to be a subject of immense interest because of its centrality in many naturally occurring systems in physics and biology, as well as its importance in applications such as robotics. Here we examine the effects on swarm pattern formation from delayed communication and topological heterogeneity, and in particular, the inclusion of a relatively small number of highly connected nodes, or "motherships," in a swarm's communication network. We find generalized forms of basic patterns for networks with general degree distributions, and a variety of dynamic behaviors including parameter regions with multistability and hybrid motions in bimodal networks. The latter is an interesting example of how heterogeneous networks can have dynamics that is a mix of different states in homogeneous networks, where high- and low-degree nodes have distinct behavior simultaneously.

2.
Phys Rev E ; 93(3): 032307, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078366

RESUMO

The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.


Assuntos
Modelos Teóricos , Movimento (Física) , Robótica , Rotação
3.
Chemphyschem ; 13(4): 959-72, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22213596

RESUMO

Functional dye molecules, such as porphyrins, attached to CdSe quantum dots (QDs) through anchoring meso-pyridyl substituents, form quasi-stable nanoassemblies. This fact results in photoluminescence (PL) quenching of the QDs both due to Förster resonance energy transfer (FRET) and the formation of non-radiative surface states under conditions of quantum confinement (non-FRET). The formation process is in competition with the ligand dynamics. At least two timescales are found for the formation of the assemblies: 1) one faster than 60 s attributed to saturation of empty attachment sites and 2) one slower than 600 s, which is attributed to a reorganisation of the tri-n-octylphosphine oxide (TOPO) ligand shell. Finally, this process results in almost complete exchange of the TOPO shell by porphyrin dye molecules. Following a Stern-Volmer analysis, we established a microscopic description of PL quenching and assembly formation. Based on this formalism, we determined the equilibrium constant for assembly formation between QDs and the pyridyl-functionalised dye molecules to be K ≈ 10(5) - 10(7) M(-1), which is several orders of magnitude larger than that of the TOPO ligands. Our results give additional insights into the non-FRET PL quenching processes involved and show that the QD surface is inhomogeneous with respect to the involved attachment and detachment processes. In comparison with other methods, such as NMR spectroscopy, the advantage of our approach is that ligand dynamics can be investigated at extremely low ratios of dye molecules to QDs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...